HEPATOPROTECTIVE EFFECT OF ETHANOLIC EXTRACTS OF Sphaeranthus indicus (Linn) ON PARACETAMOL-INDUCED LIVER TOXICITY IN RATS

K.Sundari, G. Govindaraju and B. Bharathi*

P.G and Research Department of Biochemistry, PRIST University, Thanjavur, Tamilnadu, India

1P.G and Research Department of Microbiology, PRIST University, Thanjavur, Tamilnadu, India

* Corresponding author: bharathikarnan@gmail.com

ABSTRACT: Ethanolic extract of aerial parts of Sphaeranthus indicus L was investigated for hepatoprotective activity against paracetamol induced liver damage. Various biochemical parameters were studied to evaluate the hepatoprotective activity of ethanolic extract. In serum total bilirubin, total protein, acid phosphatase, aspartate transaminase, alanine transaminase, alkaline phosphatase, γ‐Glutamyl transferase, Total Cholesterol and serum triglycerides, low density lipoprotein, high density lipoprotein were determined to assess the effect of the extract on the paracetamol induced hepatic damage. The study was also supported by histopathology of liver sections. Results of this study revealed that the markers in the animals treated with paracetamol recorded elevated concentration indicating severe hepatic damage by paracetamol, whereas the blood samples from the animals treated with ethanolic extract of roots showed significant reduction in the serum markers indicating the effect of the plant extract in restoring the normal functional ability of the hepatocytes. The dosage of extract of plant roots used was 200 & 300 mg/kg bodyweight of rat. The present study reveals that the ethanolic extract of Sphaeranthus indicus L 300mg/kg could afford a significant protection against paracetamol‐induced hepatocellular injury.

Keywords: Sphaeranthus indicus, Ethanolic extract of roots, Hepatoprotective activity, Paracetamol damage.

INTRODUCTION

Herbs play a major role in the management of various liver disorders along with other system associated diseases. Liver is a key organ regulating homeostasis within the body by various functions. Liver injury caused by toxic chemicals and certain drugs has been recognized as a toxicological problem. Hepatotoxicity is one of very common ailments resulting into serious debilities ranging from severe metabolic disorders to even mortality. Plant derived natural products such as flavonoids, terpenoids and steroids have received considerable attention in recent years due to their diverse pharmacological properties including antioxidant and hepatoprotective activity.

Sphaeranthus indicus Linn belongs to family Asteraceae. The plant is commonly known as Gorakmundi in Hindi. It is an annual spreading herb, which grows approximately 15-30cm in heights. The plant is distributed throughout the plains and wet lands in India, Sri Lanka & Australia. It is used indigenously in the Indian system of medicine as an anthelmintic. The plant has a wide range of medicinal value and has been used in hemicranias, jaundice, leprosy, diabetes, fever, pectoralgia, cough, gastropathy, hernia, hemorrhoids, helminthiasis, dyspepsia, skin diseases and nerve tonic. Pharmacological activities such as immunomodulatory, antimicrobial, antibacterial, anxiolytic, wound healing action were reported on this plant. Phytoconstituents isolated from this plant are eudesmanolides, isoflavonoids, 7-hydroxy eudesmanolides, sterol glycoside, essential oil (cadiene, ocimene, citral, p-methoxycinnamaldehyde, geraniol, eugenol and geranyl acetate), and eudesmanolides. The present study was undertaken to study the possible hepatoprotective role of ethanolic extract of roots of Sphaeranthus indicus L.

Paracetamol (acetaminophen) is a widely used antipyretic and analgesic which produces acute liver damage if overdoses are consumed. Paracetamol is mainly metabolized in liver to excretable glucuronide and sulphate conjugates. However, the hepatotoxicity of paracetamol has been attributed to the formation of toxic metabolites when a part of paracetamol is activated by hepatic cytochrome P-450 to a highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). NAPQI is initially detoxified by conjugation with reduced glutathione (GSH) to form mercapturic acid. However, when the rate of NAPQI formation exceeds the rate of detoxification by GSH, it oxidizes tissue macromolecules such as lipid or SH group of protein and alters the homeostasis of calcium after depleting GSH. Silymarin is marketed as one of the standard hepatoprotective herbal formulation.
Plant materials
The fresh aerial parts of Sphaeranthus indicus L were collected during the month of February – 2009 in the Thanjavur, Tamilnadu, India. It was botanically identified and authenticated. A voucher specimen (SI-12) has been kept in our laboratory for future reference. The root was shade dried, powdered, sieved through 40 mesh and stored in a tightly closed container for future use.

Preparation of plant extract
The fresh dried powdered of Sphaeranthus indicus L were extracted (soxhlet) with ethanol. These extracts were condensed using rotary vacuum evaporator followed by vacuum evaporator and stored in desiccator. The powder of all the extracts was suspended in appropriate solvent systems and was subjected to further analysis.

Chemicals
Paracetamol was purchased from, CIPLA LTD., Vill. Juddikalan, Baddi, H.P. Silymarin was supplied by Panacea Biotech Ltd, New Delhi. All other chemicals and other bio chemicals used in the experiments were of analytical grade from different firms. The organic solvents were distilled before use.

Animals
Wistar male Albino rats weighing between 180-200 g were used for this purpose. The animals were housed in polypolypropylene cages and maintained at 24 ± 2o under 12h light dark cycle and were fed ad libitum with standard pellet diet and had free access to water maintenance and use of animals as per the experiment was approved by the institutional Animal Ethics Committee.

Experimental designs
The experimental animals were divided into 5 groups of six rats each.

Group I: Control rats fed with standard diet.

Group II: Animals orally received paracetamol (1g kg⁻¹ body weight) twice a week for 6 weeks.

Group III: Animals received 1g kg⁻¹ body weight of paracetamol dissolved in glucose water orally along with 200 mg/kg body weight of ethanol extract of Sphaeranthus indicus L. twice a week for 6 weeks.

Group IV: Animals received 1g kg⁻¹ body weight of paracetamol dissolved in glucose water orally along with 300 mg/kg body weight of ethanol extract of Sphaeranthus indicus L. twice a week for 6 weeks.

Group V: Animals received 50 mg/kg body weight of standard drug silymarin and 1g kg⁻¹ body weight of paracetamol twice a week for 6 weeks and served as standard control.

Sample collection
At the end of the experimental period (45 days) the animals were sacrificed by cervical dislocation after an overnight fast. Blood sample of each group was collected separately into sterilized dry centrifuge tubes and allowed to coagulate for 30 min at 37°C.

Evaluation of effect on biochemical variables
The clear serum obtained after centrifugation was used for the estimation of serum alanine amino transferase, serum aspartate amino transferase¹⁵, alkaline phosphatase¹⁶, gamma-glutamyl transferase¹⁷, acid phosphatase¹⁸, serum protein¹⁹, serum bilirubin²⁰, cholesterol²¹ and triglyceride²². LDL, HDL⁴³

Histopathology study
Liver is dissected out and the liver samples were excised from the experimental animals of each group and washed with the normal saline. Initially the materials were fixed in 10% buffered neutral formalin and then with bovine solution. They were processed for paraffin embedding following the microtome technique. The sections were taken at 5μ thickness processed in alcohol-xylene series and were stained with alum-haematoxylin and eosin. The sections were examined microscopically for the evaluation of histopathological changes.

Statistical Analysis
The values were expressed as mean ± SEM. Statistical analysis was performed by one way analysis of variance (ANOVA) followed by Dunnet's test was carried out and p<0.001 was considered as significant.

RESULTS
Effect of ethanolic extract of Sphaeranthus indicus L on paracetamol induced liver injury in rats with reference to biochemical changes in serum are given in Table 1 and 2.
Table 1: The effects of *Sphaeranthus indicus* L on biomarkers of hepatic damage

<table>
<thead>
<tr>
<th>Group</th>
<th>SGPT (IU/L)</th>
<th>SGOT (IU/L)</th>
<th>ALP (IU/L)</th>
<th>ACP (IU/L)</th>
<th>GGTP (IU/L)</th>
<th>Total Protein (gm/dl)</th>
<th>Total Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>76.72 ± 3.36</td>
<td>70.48 ± 2.36</td>
<td>256.42 ± 4.91</td>
<td>10.77 ± 0.44</td>
<td>87.0 ± 1.2</td>
<td>9.62 ± 0.36</td>
<td>1.60 ± 0.14</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>343.83 ± 5.64</td>
<td>297.47 ± 3.16</td>
<td>541.73 ± 4.51</td>
<td>32.73 ± 0.84</td>
<td>129.6 ± 2.7</td>
<td>3.87 ± 0.21</td>
<td>6.20 ± 0.63</td>
</tr>
<tr>
<td>EESI 200mg/kg + APAP</td>
<td>173.69 ± 3.39*</td>
<td>161.33 ± 3.98*</td>
<td>338.47 ± 5.17*</td>
<td>26.42 ± 3.97*</td>
<td>85.00 ± 2.3*</td>
<td>6.97 ± 0.06*</td>
<td>2.95 ± 0.35*</td>
</tr>
<tr>
<td>EESI 300mg/kg + APAP</td>
<td>145.42 ± 3.21**</td>
<td>125.18 ± 2.33**</td>
<td>286.37 ± 6.37**</td>
<td>26.42 ± 0.60**</td>
<td>60.00 ± 1.23**</td>
<td>8.78 ± 0.22**</td>
<td>2.18 ± 0.15**</td>
</tr>
<tr>
<td>Silymarin 50mg/kg + APAP</td>
<td>112.25 ± 3.19</td>
<td>104.12 ± 2.68</td>
<td>276.45 ± 5.22</td>
<td>12.10 ± 0.20</td>
<td>55.3 ± 1.78</td>
<td>9.13 ± 0.26</td>
<td>1.97 ± 0.22</td>
</tr>
</tbody>
</table>

All values are in Mean ± SEM, P<0.001* significant, P<0.001** more significant Vs Control, N=6.

Table 2: The effects of *Sphaeranthus indicus* L on lipid profiles

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Cholesterol (mg/dl)</th>
<th>Triglycerides (mg/dl)</th>
<th>LDL - Cholesterol (mg/dl)</th>
<th>HDL - Cholesterol (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>93.60 ± 5.67</td>
<td>63.40 ± 4.46</td>
<td>25.33 ± 2.52</td>
<td>63.40 ± 4.46</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>123.67 ± 5.11</td>
<td>89.00 ± 6.00</td>
<td>64.60 ± 3.28</td>
<td>25.60 ± 3.67</td>
</tr>
<tr>
<td>EESI 200mg/kg + APAP</td>
<td>95.00 ± 4.27*</td>
<td>50.40 ± 3.10*</td>
<td>38.00 ± 2.12*</td>
<td>35.20 ± 3.12*</td>
</tr>
<tr>
<td>EESI 300mg/kg + APAP</td>
<td>61.00 ± 4.36**</td>
<td>40.40 ± 4.31**</td>
<td>28.60 ± 2.22**</td>
<td>58.21 ± 3.12**</td>
</tr>
<tr>
<td>Silymarin 50mg/kg + APAP</td>
<td>58.12 ± 2.21</td>
<td>45.36 ± 2.11</td>
<td>25.22 ± 1.52</td>
<td>63.30 ± 4.00</td>
</tr>
</tbody>
</table>

All values are in Mean ± SEM, P<0.001* significant, P<0.001** more significant Vs Control, N=6.

Histological profile of animals is depicted in Figure a,b,c,d,e. At the end of 45 days treatment blood samples of paracetamol treated animals showed significant increase in the levels of total bilirubin, alanine amino transferase, aspartate amino transferase, alkaline phosphatase, acid phosphatase, γ-glutamyl transferase, cholesterol and triglyceride,LDL, HDL compared to the normal control group, but the total protein level decreased reflecting the liver injury caused by paracetamol; whereas blood samples from the animals treated with ethanolic extract of *Sphaeranthus indicus* L at the dose of 200 and 300 mg/kg body weight showed significant decrease in the levels of serum markers and significant increase in the total protein to the near normal value which are comparable to the values registered in the standard drug treated group of animals, indicating the protection of hepatic cells against paracetamol damage.

DISCUSSION

Liver is largest organ and it is target for toxicity because of its role in clearing and metabolizing chemicals through the process called detoxification\(^2^3\). Drug induced liver disorders occurred frequently can be life threatening and mimic all forms of liver diseases\(^2^4\). Paracetamol being a drug capable of causing liver disorders if overdoses are consumed. The covalent binding of N-acetyl-Phenzoquinonemine, an oxidation product of paracetamol, to sulphhydril groups of protein resulting in cell necrosis and lipid peroxidation induced by decrease in glutathione in the liver as the cause of hepatotoxicity have been reported earlier\(^2^5\), \(^2^6\).
Table 1 represents the changes in the activities of aspartate transaminase, alanine transaminase, alkaline phosphatase, acid phosphatase, γ-glutamyl transferase. In the assessment of liver damage by paracetamol the determination of enzyme levels such as aspartate transaminase and alanine transaminase is largely used. Elevated levels of serum enzymes are indicative of cellular leakage and loss of functional integrity of cell membrane in liver. Hepatocellular necrosis leads to high level of serum markers in the blood, among these, aspartate transaminase, alanine transaminase represents 90% of total enzyme and high level of alanine transaminase in the blood is better index of liver injury, but the elevated levels of enzymes are decreased to near normal levels after 45days treatment of *Sphaeranthus indicus* indicates that it offered protection by preserving the structural integrity of the hepatocellular membrane against paracetamol.

Alkaline phosphatase concentration is related to the functioning of hepatocytes, high level of alkaline phosphatase in the blood serum is related to the increased synthesis of it by cells lining bile canaliculi usually in response to cholestasis and increased biliary pressure. Increased level was obtained after paracetamol administration and it was brought to near normal level by *Sphaeranthus indicus* treatment.

γ-glutamyl transferase is a microsomal enzyme, which is widely distributed in tissue including liver. The activity of serum γ-glutamyl transferase is generally elevated as a result of liver disease, since γ-glutamyl transferase is a hepatic microsomal enzyme. Serum γ-glutamyl transferase is most useful in the diagnosis of liver diseases. Changes in γ-glutamyl transferase is parallel to those of amino transferases. The acute damage caused by paracetamol increased the γ-glutamyl transferase level but the same attains the normal after *Sphaeranthus indicus* treatment due to its antioxidant activity.

Chronic administration of paracetamol produced a marked elevation of the serum levels of enzymes in treated animals when compared with that of the control group. Treatment with *Sphaeranthus indicus* at a dose of 300 mg/kg significantly reduced the elevated levels of those enzymes. Treatment with *Sphaeranthus indicus* decreased the serum levels of aspartate transaminase, alanine transaminase towards the respective normal value that is an indication of stabilization of plasma membrane as well as repair of hepatic tissue damage caused by paracetamol. The above changes can be considered as an expression of the functional improvement of hepatocytes, which may be caused by an accelerated regeneration of parenchymal cells. Effective control of alkaline phosphatase, acid phosphatase, γ-glutamyl transferase levels points towards an early improvement in the secretory mechanism of the hepatic cell.

Protein metabolism is a major project of liver and a healthy functioning liver is required for the synthesis of the serum proteins except for the γ globulins. Hypoproteinemia is a feature of liver damage due to significant fall in protein synthesis.Albumin is decreased in chronic liver disease and is generally accompanied by an increase in the β and γ globulins as a result of production of IgG and IgM. Hypoproteinemia was observed after paracetamol ingestion but the trend turns towards normal after *Sphaeranthus indicus* treatment.

Serum bilirubin is one of the most sensitive tests employed in the diagnosis of hepatic diseases. Hyperbilirubinemia was observed due to excessive heme destruction and blockage of biliary tract. As a result of blockage of the biliary tract there is a mass inhibition of the conjugation reaction and release of unconjugated bilirubin from damaged and dead hepatocytes. Administration of *Sphaeranthus indicus* decreased the level of bilirubin and increased the level of protein suggesting that it offered protection.

Paracetamol seems to cause impairment in lipoprotein metabolism and also alterations in cholesterol metabolism. The levels of cholesterol, triglyceride, and LDL were significantly increased in paracetamol treated rats, when compared to control, silymarin and *Sphaeranthus indicus* treated rats (Table.2). Elevation of triglyceride levels during paracetamol intoxication could be due to increased availability of free fatty acids, decreased hepatic release of lipoprotein and increased esterification of free fatty acids. Administration of *Sphaeranthus indicus* significantly decreased serum lipid profile in paracetamol toxicity induced rats because of its hypolipidemic effects. *Sphaeranthus indicus* supplementation enhanced esterification effect through hepatoprotective property by inhibiting the free radicals effect on liver cells.

Histopathological observations

The histopathological profile of the rat of normal control in group 1 showed normal cellular architecture with distinct hepatic cells, sinusoidal spaces and central vein (Fig a). In the liver section of the rats intoxicated with Paracetamol in group 2, there is a disarrangement and degeneration of normal hepatic cells with intense centrilobular necrosis, sinusoidal haemorrhages and dilatations. There was chronic inflammatory cell infiltrate in portal tracts (Fig b). The liver section of the rats treated with ethanol extract of *Sphaeranthus indicus* 200mg/kg in group 3 and Silymarin in group 5 shows less vacuole formation reduced sinusoidal dilations, less disarrangement and degenerations of hepatocytes indicating marked regenerative activity (Fig c, e). In rats treated with higher dose of extract i.e 300mg/kg body weight p.o., the liver appeared normal (fig.d).
CONCLUSION
In conclusion, the results of the present study suggest that Sphaeranthus indicus has a potent hepatoprotective action upon paracetamol-induced liver toxicity in rats. The hepatoprotective effect of Sphaeranthus indicus can be correlated directly with its ability to reduce activity of serum enzymes. The findings of this study suggest that S. indicus can be used as a safe, cheap and effective alternative chemopreventive and protective agent in the management of liver diseases.

REFERENCES